Interplay of electromagnetic noise and Kondo effect in quantum dots

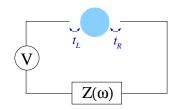
Sabine Andergassen

S. Florens, D. Feinberg (Institut Néel - CNRS / UJF, Grenoble)

P. Simon (LPM2C - CNRS / UJF, Grenoble; Universität Basel)

Motivation

- → transport through nanostructure quantum dot in Kondo regime:
 - unitary conductance
 - spin screening



- → environmental effects
 - circuit characterized by impedance $Z(\omega)$:
 - Dynamical Coulomb blockade
 - low-energy equivalence to Luttinger liquid for ohmic environment

⇒ influence of electromagnetic environment on transport?

Outline

- Introduction:
 - → Kondo physics in quantum dots (QD)
 - → Dynamical Coulomb blockade (DCB) induced by environment
- Kondo effect in presence of DCB:
 - → theoretical description
 - → transport analysis
 - → Experimental proposal

The Kondo effect: a short overview

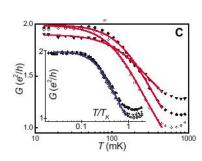
Kondo Hamiltonian:

$$H_K = J \vec{S} \cdot \sum_{\sigma\sigma',\gamma\gamma'} c_{\sigma\gamma}^{\dagger}(0) \frac{\vec{\tau}_{\sigma\sigma'}}{2} c_{\sigma'\gamma'}(0) + \sum_{k\sigma\gamma} (\epsilon_k c_{k\sigma\gamma}^{\dagger} c_{k\sigma\gamma} + \text{H.c.})$$

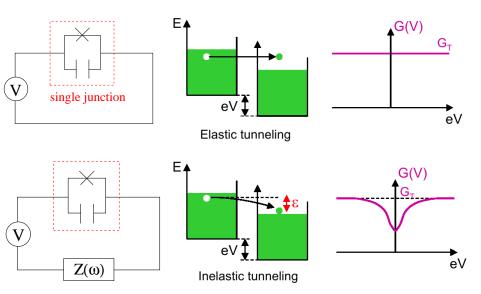
- universal scaling in $T_K = De^{-D/J}$
- signatures in transport:

$$G(T) = \frac{2e^2}{h} [1 - (\frac{T}{T_K})^2] \quad (T \ll T_K) \quad \underbrace{\widehat{\xi}}_{0}^{1.5}$$
 $G(T) \sim \frac{1}{\log^2(T/T_K)} \quad (T \gg T_K)$

Kouwenhoven and Glazman '01



Environmental effects: Tunneling



→ appearance of zero-bias anomaly

Dynamical Coulomb blockade: theoretical description

tunneling amplitudes dressed by environmental modes via phase

$$arphi(t) = e\int\limits_{-\infty}^t \delta V(t') dt'$$

describing circuit voltage fluctuations $\delta V(t')$ in terms of *bosonic* excitations with distribution function

$$P(E) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ e^{J_{\varphi}(t) + iEt}$$

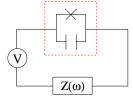
with
$$J_{\varphi}(t) \equiv \langle (\varphi(t) - \varphi(0))\varphi(0) \rangle$$
 \rightarrow " $P(E)$ theory"

 \Rightarrow effective circuit theory including $Z(\omega)$ by distribution function of bosonic excitations

Ohmic environment and low-energy equivalence to LL

$$Z(\omega=0)=R$$
 o $J_{\varphi}(t)\equiv\langle(arphi(t)-arphi(0))arphi(0)
angle\sim-2r\ln(i\omega_c t)$ with $\omega_c=rac{1}{RC}$ and $r=rac{R}{R_K}=Rrac{e^2}{h}$

- ightarrow $P(E)\sim A_r rac{E^{2r-1}}{\omega^{2r}}$ for $E\ll \omega_c$ describes also weak link in LL!
- \Rightarrow non-linear transport: $\frac{dl}{dV} \sim \left(\frac{V}{E_c}\right)^{2r}$



ohmic environment

$$Z(\omega=0)=R$$

exact MAPPING

for $\omega < \omega_c$

weak link

Luttinger liquid with

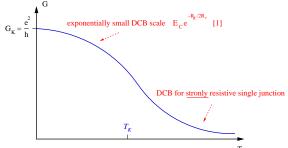
$$K=1/(1+2r)$$

Matveev '95, Safi and Saleur '04, Le Hur '04

Environmental effect on transport through Kondo quantum dot

one mode environment
 Kaminski, Nazarov, Glazman '99

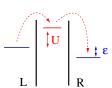
ohmic environment: competing phenomena



- \Rightarrow Key questions:
 - relevant energy scales \rightarrow influence of dissipation on T_K
 - fixed points → determination of different conduction regimes
 - [1] Panyukov and Zaikin '91, Nazarov '99, Golubov and Zaikin '01

Theoretical description: Model

Hamiltonian $H = H_{\rm dot} + H_{\rm leads} + H_{\rm tun} + H_{\rm env}$ with $H_{\rm env} =$ collection of harmonic oscillators



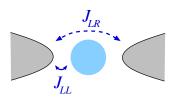
ightarrow effective Kondo Hamiltonian in quasi-elastic approximation $\omega_{\mathrm{bath}} \ll U$

$$H_K = \sum_{\gamma\gamma'} J_{\gamma\gamma'} \; e^{i(\varphi_\gamma - \varphi_{\gamma'})} \sum_{k\sigma,k'\sigma'} c^\dagger_{k\sigma\gamma} \frac{\vec{\tau}_{\sigma\sigma'}}{2} c_{k'\sigma'\gamma'} \cdot \vec{S} \quad \ (\gamma,\gamma' = L,R)$$

with $J_{\gamma\gamma'}pprox 2t_{\gamma}t_{\gamma'}\left(rac{-1}{\epsilon_d}+rac{1}{U+\epsilon_d}
ight)$ and $ec{S}$ local spin on quantum dot

processes described by Kondo couplings:

- J_{LL} , J_{RR} charge conserving
- $-J_{LR}, J_{RL}$ charge transfer (tunneling)
 - \Rightarrow affected by DCB



Results: weak-coupling analysis

RG flow equations as a function of energy scale Λ :

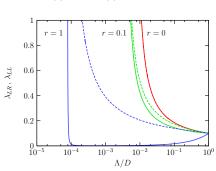
$$\frac{dj_{LL}}{d\log\Lambda} = -j_{LL}^2 - j_{LR}^2 \int_0^{\Lambda} dE \ P(E)$$
 "spin screening"
$$\frac{dj_{LR}}{d\log\Lambda} = -j_{LR}(j_{LL} + j_{RR})$$
 "transparency"

with dimensionless spin-exchange interactions $j_{\gamma\gamma'}=\rho_0J_{\gamma\gamma'}$

 \rightarrow low-energy description for $\Lambda \lesssim \omega_c$

$$\begin{split} \frac{d\lambda_{LL}}{d\log\Lambda} &= -\lambda_{LL}^2 - \lambda_{LR}^2 \\ \frac{d\lambda_{LR}}{d\log\Lambda} &= -\lambda_{LR} (\lambda_{LL} + \lambda_{RR} - r) \end{split}$$

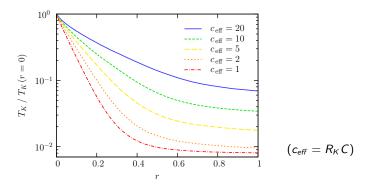
with reduced couplings $\lambda_{\gamma\gamma'}$



different low-energy behavior depending on dissipation r

Results: weak-coupling analysis

Kondo temperature T_K



- systematic decrease of T_K with increasing $r \rightarrow reduction$ of Kondo
- significant dependence on circuit impedance $Z(\omega)$ via distribution function P(E) of environmental modes

Results: strong-coupling analysis

extension of low-energy mapping to double junction:

equivalence to Kondo model between Luttinger liquid leads

with effective interaction parameter

$$K = \frac{1}{1+2r}$$

ightarrow singlet Kondo groundstate (spin screening) survives dissipation due to divergence of j_{LL} and j_{RR}

BUT transport strongly affected and gate-voltage dependent via j_{LR}

Distinction of two conduction regimes:

- $-r < \frac{1}{2}$: fully transparent transport *only* for p-h symmetry
- $-r > \frac{1}{2}$: non-ohmic transport characterized by DCB \rightarrow power laws

Results: strong-coupling analysis

Transport characterized by non-ohmic DCB behavior

$$ightarrow$$
 weak dissipation for $r < \frac{1}{2}$:
$$ightharpoonup rac{dl}{dV} pprox a \left(rac{eV}{T^*}
ight)^{2r}
ightharpoonup rac{1}{2}
ightharpoonup r$$

$$rac{dl}{dV} pprox 2 G_K \left(1 - b \left(rac{eV}{T_K}
ight)^{2r}
ight)$$
 fully transparent for p-h symmetry

 \rightarrow strong dissipation for $r > \frac{1}{2}$:

in general Kondo effect only in strongest coupled electrode

$$rac{dI}{dV} pprox c \left(rac{eV}{T_{1CK}}
ight)^{2r} \quad ext{for} \quad J_{LL}
eq J_{RR}$$

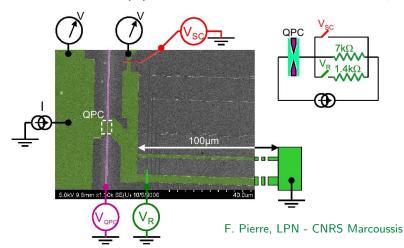
for balanced couplings 2-channel Kondo (partial screening of spin)

$$\frac{dI}{dV} pprox d \left(\frac{eV}{T_{2CK}} \right)^{2r-1}$$
 for $J_{LL} = J_{RR}$

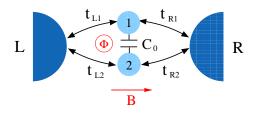
Experimental proposal

environmental effects:

- reduction of T_K
- non-linearities in I(V) characteristics \rightarrow extension to QD setup



Environmental effects on orbital Kondo

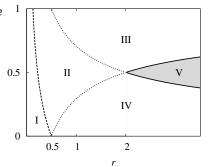


entangled spin and orbital degrees of freedom

Simon and Feinberg, PRL '06 $\,$

different Kondo fixed points and localized phase geometric asymmetry $\beta \sim C_{L1}C_{R2} - C_{R1}C_{L2}$

- $\rightarrow\,$ vanishing of Kondo screening in phase $\stackrel{-}{V}$ due to coupling of φ to charge states!
- ⇒ reduced *efficiency* of device as spin-filter



Summary

transport through quantum dot environmental effects

in Kondo regime: (DCB)

- spin screening \rightarrow survives

- unitary conductance \rightarrow affected

⇒ anomalous low-T transport properties

References:

Florens, Simon, Andergassen, and Feinberg, Phys. Rev. B **75**, 155321 (2007) Andergassen, Simon, Florens, and Feinberg, Phys. Rev. B **77**, 045309 (2008)